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Abstract

Esti mates of production functions suffer froman omtted
vari able problem plant quality is an omtted variable that is
likely to be correlated with variable inputs. One approach is to
capture differences in plant qualities through plant specific
intercepts, i.e., to estimate a fixed effects nodel. For this
technique to work, it is necessary that differences in plant
quality are nore or less fixed; if the "fixed effects" erode over
time, such a procedure beconmes problematic, especially when
working with long panels. In this paper, a standard fixed
effects nodel, extended to allow for serial correlation in the
error term is applied to a 16-year panel of textile plants.

Thi s paranetric approach strongly accepts the hypothesis of fixed
effects. They account for about one-third of the variation in
productivity. A sinple non-paranetric approach, however,
concludes that differences in plant qualities erode over tine,
that is plant qualities N-mix. Monte Carlo results denonstrate
that this discrepancy cones fromthe paranetric approach inposing
an overly restrictive functional formon the data; if there were
fixed effects of the magnitude neasured, one would reject the
hypot hesis of N-m xing. For textiles, at l|least, the functional
formof a fixed effects nodel appears to generate m sl eadi ng
conclusions. A nore flexible functional formis estimated. The
"fixed" effects actually have a half life of approximately 10 to
20 years, and they account for about one-half the variation in
productivity.
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| . I ntroduction

Estimates of production functions provide the framework that
econom sts enploy to study the sources of economc growh (cf.

Sol ow, 1957; Jorgenson, CGollop and Frauneni, 1987; Bartel snman,
1992; A ley and Pakes, 1992; Cort, Bahk and Wall, 1993). Until
recently, nost of this work has been based on nation-w de or

i ndustry-wide information. The increasing availability of plant
and firmlevel data in manufacturing has generated research in
the m cro-foundations of productivity growh and the relationship
bet ween plant |evel productivity dynam cs and job flows

(Bartel sman and Dhrynes, 1991; Davis and Hal ti wanger, 1992;
Baily, Hulten and Canpbell, 1992; Caballero and Hanmour, 1994;
Campbel |, 1994; Cool ey, G eenwood and Yorukoglu, 1994; Atkeson,
Khan and GChani an, 1995). As old as the literature on the

anal ysis of economc growh, however, is the debate on how to
estimate production functions. That is, howto create the
framework with which to performthe analysis (see Giliches and
Mai resse, 1995 for a recent review of this issue).

Techni ques for estimating production functions fall into two
groups, econonetric and non-econonetric. The non-econonetric (or
accounting) nmethod requires the assunptions of constant returns
to scale and static cost mnimzation to take the cost shares as
estimates of the output elasticities (cf. Solow, 1957). Under

t he econonetric nmethod, one regresses the |og of output onto the



|l ogs of the different types of inputs (cf. Dhrynes, 1991). The
residual of this equation (tines 100) is the percentage of output
produced, above and beyond expected output given the inputs used,
i.e., productivity. This suggests the intrinsic problemwth the
econonetric approach: as |ong as the nmanager knows nore about his
pl ant than the econonetrician, and the manager uses this
knowl edge in his choice of inputs, the error termwl| be
correlated wth the independent variables resulting in biased
paraneter estimtes (hereafter the simultaneity problem

The nost conmon "solution” to this problemis a fixed
effects nodel: one assunes that there are unobserved, permanent
productivity differences across plants and estimates these
di fferences through plant specific intercepts. The nul
hypot hesis of no fixed effects is routinely rejected via an F-
test. For a panel that is short in the time dinension, this
approach may be reasonable. Over tinme, however, it is certainly
possi bl e that these "permanent” productivity differentials change
because the plant retools, the nanager retires, and/or the
product m x changes. 1In order for a fixed effects nodel to solve
the sinultaneity problemin a |long panel, it is necessary that
the "fixed" effects are relatively fixed over the length of the
sanpl e. This brings us in a rather round about way to a recent
non-paranetric test of alternative nodels of industry dynam cs

(Pakes and Ericson, 1995). Pakes and Ericson test an active



expl oration nodel (Ericson and Pakes, 1995) agai nst a passive

| earni ng nodel (Jovanovic, 1982). In the active exploration
nodel, firms invest to inprove their quality, and hence their
quality may change permanently. |In the passive |earning nodel

in contrast, firns are born with a fixed quality that they |learn
over tinme. Therefore, under passive |earning there are permnent
di fferences between plants, i.e., fixed effects.

The sharpest distinction between the two nodels involves the
concept of N-mixing--N-mixing is one definition of a stochastic
sequence ( Xi, X;+1, X;t42, - . . ) becom ng i ndependent of the initial
value (x,) as t becones large. 1In the active exploration nodel,
the effect of being a certain quality today will erode over tine
(plant quality N-m xes). In the passive learning nodel, in
contrast, it cannot (plant quality does not N-mix). Pakes and
Eri cson use firmsize (nunber of enployees) as a proxy for firm
quality. They find that there are permanent differences in the
size of Wsconsin retail firms, which is consistent with the
passive |l earning nodel. The active exploration nodel, in
contrast, is consistent wth Wsconsin manufacturing firns,
because manufacturing firns do not have permanent size
differences. In this paper, | present a non-paranetric test for

N-m xi ng of plant productivity levels.?

My test is an application of the general l|inear nodel, it is
asynptotically equivalent to Pakes and Ericson's unconstrai ned
test when | allow for heteroscedasticity of the error term
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The I og of total factor productivity (tfp), the residual of
a production function, is arguably a better neasure of firmor
plant quality than size in a conpetitive market.? |In this paper,
| nmeasure tfp at the plant level in the textile industry using a
16-year panel.® | then test for the presence of fixed effects
using a conventional paranetric nmethod, extended to allow for
serial correlation in the error term and find that there are
permanent differences in tfp. |In fact, the permanent differences
account for about one-third the variation in productivity. From
t he non-paranetric viewpoint, in contrast, plant level tfp's N-
m x, which inplies that there are no permanent differences in
tfp. Mnte Carlo techniques resolve the di screpancy between the
two approaches; if there actually were fixed effects in the data

of the magnitude neasured, the non-paranetric test would reject

’Economi sts have long been interested in the degree of
persistence in neasures of plant/firmaquality. Mieller (1986;
see al so Pakes' review, 1987) and Runuelt (1991) | ook at profit
rates. Roberts and Supina exam ne output price (1994). Finally,
Dhrymes (1991), Bartel sman and Dhrynmes (1991), Baily, Hulten and
Canmpbel | (1992), and Dwyer (1995b) study the persistence in plant
productivity levels. The technique devel oped in Section VI may
provi de a useful nmethod for describing the nature of persistence
in all of these neasures.

The data are an extract of the Longitudi nal Research Database
(LRD). This extrenely rich data base is based on the Annual
Survey of Mnufactures and the Census of Mnufactures.
Unfortunately, access to the data requires financial support and
a security clearance. Furthernore, the research nust be
performed in residence and renoving statistics requires a
cl earance procedure to ensure that confidentiality is maintained.
Further information is available on the Census Bureau's world
wi de web site (http://ww. census. gov/ces. htnl).
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t he hypothesis of N-mixing. It appears that the parametric form
of the fixed effects nodel is too restrictive and consequently

| eads to msleading results. This suggests that paranetric
results that find fixed effects in panel data may be m sl eadi ng.

This result is consistent with an active exploration nodel
for plant dynamcs in the textile industry; the textile plants
that survive are those that are able to reinvent thenselves. In
terms of our understanding of dynam c industry equilibria, this
finding |l eads to two nore questions. First, how strong is the
survival condition? Second, how long does it take plants to
rei nvent thenselves? The survival condition is strong but not
overwhel m ng; sixteen year survival rates range from30 to 60
percent across the 21 different four-digit textile industries.*
The answer to the latter question requires one to estinmate a nore
flexible functional formfor the tinme series properties of plant
| evel tfp.

It appears as though there are at | east two conponents to
plant level tfp. One conponent is transitory while another is
hi ghly persistent. The transitory conponent may result from
i diosyncratic supply or demand shocks and/or transitory
measurenent error. The persistent conponent may be the product

of managerial and technol ogi cal differences and/ or persistent

“The survival rate is the percentage of plants that were in the
industry in 1972 and were in any manufacturing industry in the
1987 Census.



measurenent error. Such a deconposition can be represented as
the sumof two AR(1) processes, with the persistent and
transitory conponents having a large and a small autocorrel ation
coefficient, respectively. Consistent estinmates of these two
conponents reveal a great deal of persistence in the latter
conponent; if a plant is 50 percent above average today, net of
the transitory conponent, you would expect it to be 25 percent
above average 10 to 20 years fromnow. This degree of
persi stence suggests that either the market is working rather
slowy or there is neasurenent error in the persistent
conponent.® Furthernore, the persistent conponent explai ns about
45 percent of the variation in productivity, which is nore than
suggested by the fixed effects nodel. This suggests that forcing
t he persistent conponent to be fixed understates its inportance.
The remai nder of this paper is organized as follows. |In the
next section, | present the econonetric background behind the
fixed effects nodel as a solution to the sinultaneity problem
In section Ill, | discuss ny data and how | neasure plant |evel
tfp. Sections IV and V present the paranetric case for fixed
effects and the non-paranetric case for N-m xing, respectively.

Section V resolves the discrepancy in the two results through

®Not all of the dispersion in productivity levels is the
product of neasurenent error. Plants with above average
productivity |l evels expand faster and are less likely to exit
(Dwyer, 1995b). | will conme back to this issue in the
concl usi on.



Monte Carlo techniques. Section VI presents consistent estimates
of a nore flexible functional form which suggest that the fixed
effects actually have a half [ife of 10 to 20 years. A brief
consi deration of the econonetric and econom c inplications of
these results finishes out the paper.
1. Econonetric Background

The argunent for a simultaneity problemin estinates of
production functions is sinple and old.® Its sinplest formis
the followng. |If the quality of one plant is higher than that
of another, then the owner of the nore productive plant wll
choose to use nore inputs. This inplies that the OLS estimate of
the elasticity of output with respect to the input has an upward
bi as, as can be analytically illustrated.

Suppose the true production function is:

Yig = QX v @, * e

where y is the log of output, x is the log of an input, ais a
pl ant specific effect that is known to the firm but unknown to
the econonetrician (allowing for nore than one production input

is straightforward), is the elasticity of output with respect
to the input, and , is an idiosyncratic shock unknown to both

t he manager and the econonetrician. Suppose the manager chooses

®For a detailed history of this argunent see Giliches and
Mai resse (1995).



X to maximze profits:

E(A, X" -wX

i) =

—
X = argmax. .

. 1 E €t
i)

where | ower case letters denote logarithnms, wis the input cost
per unit output and x* denotes the optinmal |evel of the input (In

order for x" to be finite, must be |l ess the one, i.e.,

decreasing returns to scale.). Note that x" is positively

correlated with a. The COLS estimate of " is given by:
&= Cov(y, X) _ Cov(uax, x) +Cov(a, x) oyt Var(a)
Var (x) Var(x) Var(x) (1-a)
Therefore, ™ has an upward bias (™ > *); actually ™ will always

equal one in this framework (Atkeson, Khan, and GChani an, 1995).°
A possible "solution" is to suppose that a;; is constant over

tinme (a=a;, for all t). Then one either includes plant dunm es

I'f there were errors in static optimzation, i.e., X, = X;{ +

Vi, then
E(&):w( 1 ]( Var(a)].
1-o Var (x)

Therefore, the E(™) goes to " and 1 as Var(v)/Var(a) goes to 4
and 0, respectively.




or estimates the regression as deviations fromthe tine nean
(Vii-y;. on X;;-%X; ), which is algebraically equivalent (for a
recent exposition of this technique see Geen, 1993). Provided
the rest of the Gauss Markov assunptions apply, the estinate of
" is now unbiased. Even if a were truly constant over tineg,
such a nethodology is not without costs. |If there is transitory
measurenent error in X;;, then subtracting out the tinme nean of X
i ncreases the noise to signal ratio and aggravates the downward

bi as on associated with the neasurenent error.® Neverthel ess,
the fixed effects solution is commonly utilized in the
literature; sonmetinmes the technique is contrasted with the
between and total estimates and sonetines instrumental variables
are used (cf. Irwin and Kl enow, 1994; Jones and Kato, 1995).

Early on, the fixed effects technique was applied to
agricultural data (Giliches and Mairesse, 1995). The hypothesis
that a;; is fixed over tine seens reasonabl e when | ooki ng at

farms and short time periods. The quality of the |and, which is

relatively fixed over time, is known to the farner before

8Thi s hypothesis is rather consistent with what happens to the
capital coefficient when estimating a fixed effects nodel; it
beconmes i nplausibly small both in ny data and others (cf.
Mai resse and Giliches, 1990; A ley and Pakes, 1992; Jones and
Kato, 1995). FErrors in neasurenent of capital include non-
uni formcapacity utilization and the fact that when new

i nvestnment actually cones on line is not observed. It is
reasonabl e to suspect that these errors in neasurenent are nuch
more of a within (x;; - x;) than a between (Xx; ) phenonenon, that

is they will average out over tinme (Giliches, 1986 and for
further elaboration see Giliches and Mairesse 1995).
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choosing the |l evel of production inputs. The idiosyncratic
shock, ,, is then viewed as weather, which is unknown to both

t he econonetrician and the framer until after the inputs have
been purchased. | n manufacturing, however, this interpretation
becones rather problematic, especially as the tinme di nension of
panel s becones longer. For a certain period of tinme, a plant may
have a fixed technology. Over tinme, however, there is always the
possibility of a plant retooling. |If the a, is tinme varying,
then the fixed effect method can not fully account for the
simultaneity problem O course, the extent to which the fixed
effects nethod partially accounts for the sinultaneity problemis

goi ng to depend on how variable a;; is over the sanple period.

L1l Estimates of Productivity at the Plant Level.

My dat abase, an extract of the Longitudi nal Research
Dat abase (LRD), includes plants in 21 different four-digit
textile industries from1972 to 1987. The panel is highly
unbal anced. This results fromplants entering and exiting as
well as the fact that small plants are sanpled with a probability
of less than 1 in non-census years. The appendi x contains a
description of the sanpling nethods as well as a discussion of
the construction of the each variable. Table 1 reports the
nunber of plants and firms ever present in each industry.

Suppose production in a four digit textile industry can be

10



represented by a val ue added Cobb- Dougl as production function:

yit = O‘lit+Bkit+€it’

where y is value added, | is total enploynent, k is gross book
val ue of capital, and , is the residual, i.e., the log of total

factor productivity. This paper will exam ne the stochastic

process behind the estimated residual, tfp. |In order to estimate
the residual, | first need consistent estimtes of " and $,
i.e., | need to performthe first stage of GLM In order to

obtain efficient estimtes of and $, one woul d then use the
knowl edge of the stochastic process behind the residual to
estimate the second stage of a GLM procedure (for exanple, a
random ef fects nodel ). ?®

| use the OLS estimates of and $ after including tinme and
time region dunmes to take into account potential sinultaneity

probl ems resulting from aggregate shocks.® Dwer (1994) argues

that this techni que does reduce the sinmultaneity bias in the

estimates of " and $. It is likely, however, that these dumy

°o'f there are sinultaneity problens and neasurenent error in
the data, correcting for heteroscedasticity and seri al
correlation does not |ead to unbiased estimates. Since | believe
that there are both sinmultaneity and neasurenent error in the
data, it is not clear what one would gain by correcting for
het eroscedasticity and serial correlation.

9 do not enploy plant specific intercepts when estimting '
and $, because they lead to inplausibly |ow estimtes of $, the
out put elasticity of capital.

11



vari ables do not fully elimnate the sinultaneity problens and
certainly do not elimnate the nmeasurenent error in the
i ndependent variables. | have, therefore, conducted robustness

tests of the key results through alternative estimates of and

$. | use the | abor share and one m nus the | abor share as

esti mates of and $, which are consistent and unbi ased under
the assunptions of static cost mnimzation and constant returns
to scale. Additionally, | use labor productivity, which
arbitrarily sets ™" to 1 and $ to 0. Regardless of the neasure
of productivity, the results are substantively the sane.

For each four-digit industry, | estinmate:

= - + + +
Yip = @7 i — ap, Iy, 855 o Ligz ot ¥BK; YeEy,

ot
1l
~1
N
N

The subscripts, itr, denote the plant, tine period, and region

respectively. The indicator variable, |, is defined as:
irt = 1 if year =t and region =r,
0 ot herwi se,

" abor share is conputed as the wei ghted average of total
conpensation divided by val ue added over the whol e sanple, where
the weights are the real val ue added of each plant. The | abor
share is consistently smaller than the econonetric estinate of
" Therefore, this nmeasure of productivity places a | arger
wei ght on capital productivity. Labor productivity, nmeasured as
real val ue added per enpl oyee, places no weight on capital
productivity. Most other nmeasures of productivity, therefore,
should Iie "within" these three neasures.

12



where region 1 is the md-atlantic states (NY, NJ and PA), region
2 is the southern states (VA, W, NC, SC, GA FL, KY, TN, AL, M)
and region O is all other states. Table 2 sunmarizes the results
of these regressions. Observe that the coefficient estimates are
pl ausi bl e (the capital coefficient is always greater than 0) and
t he production functions exhibit constant returns to scale or

close to constant returns to scale. The residual, estimted tfp,

is then conputed as

The estimated tfp is a randomvariable. This paper's results,
Wi th respect to statistical inference, pertain to this random
variable rather than its true value.' The reader may be
concerned with how ny results regarding the stochastic process
behind the estimated tfp, ,,,, relate to the true value of ,;,.
The fact that nmy results are robust to many neasures of
productivity, however, makes it unlikely that these results are

t he product of the neasurenent error in ™ and $.

Pipie = S0+ (- i+ ($-9) ki
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Tabl e 1: Nunber of Firnse and Pl ants Ever Present in Each
| ndustry

Sl C Nunmber | Nunber
of of
Firns Pl ant's
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2211
2221

2231
2241

2251
2252
2253
2254
2257
2258

2259
2261

2262

2269
2273
2282

2283

2295
2296
2297
2298
2299

(Broad woven fabric mlls, cotton)
(Broad woven fabrics mlls, man nmade
fiber and silKk)

(Broad woven fabric mlls, wool)
(Narrow fabrics and other smallwares
mills)

(Wbnen' s hosi ery above the knee)

(Wnen' s hosi ery bel ow the knee)
(Knit outerwear mills)

(Knit underwear mlls)

(Grcular knit fabric mlls)
(Lace goods and warp knit fabrics, an
aggregati on see appendi x)

(Knitting mlls NEC

(Fi ni shers of broad woven cotton

fabrics)

(Fi ni shers of broad woven man- made

fiber and silKk)

(Finishers of textiles NEC)
(Carpets, an aggregation see appendi x)
(Yarn texturizing, throwi ng, tw sting
and winding mlls)

(Yarn and thread mlls, an

aggregati on see appendi x)

(Coated fabrics, not rubberized)

(Tire cord and fabric)

(Nonwoven fabrics)

(Cordage and tw ne)

(Textil e goods NEC, an aggregation

see appendi x)

334
531
233
422
325
541
1583
139
922
499

180
447
468
321
678
380
586
344

22
217
249
885

496
776
249
460
376
609
1645
167
1008
548

177
471
523
337
733
432
858
355

34
249
267
931
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Tabl e 2: Esti mat es of Production Functions

SIC " $ ' '+$ R2

2211 0.8242 0.1739 0.9981 0.88
(.0164) (.0131) (.0090)

2221 0.8013 0.1720 0.9732 0.86
(.0117) (.0093) (.0071)

2231 0.6936 0.2773 0.9709 0.86
(.0274) (.0224) (.0151)

2241 0.7740 0.1845 0.9585 0.83
(.0185) (.0136) (.0123)

2251 0.8550 0.1665 1.0215 0.85
(.0226) (.0188) (.0145)

2252 0.8678 0.1849 1.0527 0.84
(.0177) (.0135) (.0103)

2253 0.6332 0.3303 0.9635 0.83
(.0114) (.0091) (.0076)

2254 0.8579 0.1369 0.9948 0.84
(.0358) (.0265) (.0195)

2257 0.7718 0.1859 0.9577 0.80
(.0144) (.0113) (.0089)

2258 0.7811 0.2374 1.0185 0.83
(.0210) (.0161) (.0124)

2259 0.5732 0.3632 0.9363 0.87
(.0393) (.0328) (.0225)

2261 0.8333 0.1929 1.0262 0.89
(.0265) (.0214) (.0143)

2262 0.8152 0.1776 0.9928 0.89
(.0192) (.0152) (.0104)

2269 0.8457 0.1784 1.0242 0.82
(.0282) (.0222) (.0169)

2273 0.7585 0.2467 1.0052 0.80
(.0198) (.0162) (.0100)

2282 0.7805 0.1992 0.9798 0.81
(.0220) (.0165) (.0135)

2283 0.8845 0.1319 1.0164° 0.79
(.0132) (.0101) (.0081)

2295 0.8193 0.2048 1.0241 0.82
(.0258) (.0197) (.0143)

2296 0.9080 0.1934 1.1014° 0.72
(.0743) (.0716) (.0507)

2297 0.7182 0.2739 0.9921 0.82
(.0303) (.0204) (.0190)

2298 0.8304 0.1753 1.0057 0.86
(.0271) (.0219) (.0153)

2299 0.7451 0.2559 1.0010 0.84
(.0167) (.0131) (.0102)

The standard errors are in par ent heses, which should be interpreted with
caution, because the procedure does not take into account the serial
correlation in the error term The " in colum four denotes that the
hypot hesi s of constant returns to scale can be rejected with 95 percent

16



certainty.
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V. The Case for Fixed Effects

Previ ous work suggests that each plant's productivity has a
per manent conponent and an idiosyncratic conponent that contains
serial correlation (Dwer, 1995b). Suppose that estimated tfp

can be characterized by:

tfpit SVt a; t e €5 T PE tH

where v, is a non-stochastic tinme shock, a is a non-stochastic
fixed effect, D is the autocorrelation coefficient, and Z;; is
i.i.d. across tine and plants. Let T and N be the tine dinension
and the cross-sectional dinmension of the panel, respectively.
Estimating the paraneters of such a data-generating process is
problematic in the context of an unbal anced panel. The first
problemarises in the estimte of the serial correlation
coefficient. Regressing the residual on the |lag of a residual
introduces a sinmultaneity problem because the |agged endogenous

variable is not independent of the error termby construction.?®

BFor expositional purposes, suppose v, is known to be 0 for al
t. The OLS estimate of D is obtained by regressing ,;; - ,; on
sit-1 - =i - The OLS estimate is therefore biased because both the
right hand side and left hand side of the equation contain ,; .
The equation one is actually estimating is:

€, =pPle;, 7€;.) +u, *e,.
Note that the neasurenent error in the dependent variable, ,;,
is negatively correlated with the error term (:;, + ,, ), which
yields a dowmmward bias on D. The estimate of D will converge in
probability to the true value with T for fixed N, but not with N
for afixed T. This is a problem because in panel data T tends

18



Thi s problem however, goes away as the tinme di nension goes to
infinity for every plant. For four industries, a bal anced panel
can be constructed, that is a panel in which at |east 30 plants
are observed in every year over the 16 year tine period.* This
time dinmension is viewed as sufficiently large to allow for the
estimation of a fixed effects nodel wth a | agged endogenous
vari abl e.

| estimate:

where x;; = tfp;; - tfp, for the four industries, via OLS. The
results of this procedure are in the fourth colum of Table 3.

An alternative nethodology is to construct dunmy vari abl es
for each plant and to pre-nultiply both the independent vari abl e
(x;;) and the dumry variables by H where H H equals the inverse
of the variance covariance matrix of the error term which is a
function of D. Then one searches for the D that mnimzes the
sum of squared residuals resulting fromthe OLS regression on the

transforned variables. The results of the search procedure are

to be small.

“Bal anci ng the panel, of course, introduces the possibility of
sanpl e selection bias. Dwer (1995b) conpares results froma
"robust nethod of perform ng analysis of variance on an
unbal anced panel with serial correlation and substanti al
reporting error” to the results of the conventional nethodol ogy
executed on these bal anced panels, and argues that they are
remar kably simlar.
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inthe fifth colum of Table 3. 1In practice, the search
procedure's estimate of D is bigger than the OLS estinmate.

It is shown in Appendix |1 that

E(ESSI)

T(N-1) (c2+02); and

E(ESSZ2) =

— _ _ AT+l
TN—T—N+1—( N 1][ 2{T-1lle-p J]Gi,
T (1-p)*

where ESS1 and ESS2 are the sum of square residuals, when one
regresses tfp;; onto tinme dummes and tinme and plant dunmm es,
respectively. The term (2(T-1)D+D™)/((1-D)?) corrects for the
fact that serial correlation "looks" like a fixed effect in a
panel wth a short tinme dinmension. Colums 2, 3 and 7 of Table 3
use these two equations and the OLS estinate of D to conpute F?
F2, and the percentage of variation explained by the fixed
effects (100(F3/ (F? +F3)) for each of these four industries. The
percentage of the variation explained by fixed effects is about
one-third. Wile | conpute these nunbers using an estimate of

D, rather than its true value, the estinates are not sensitive
to one standard deviation changes in D. Therefore using the
estimate of D rather than its true val ue does not appear to
introduce a substantial bias into the estimates of F? FZ and

9% i xed.
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One can test the hypothesis that a = a for all i and j,
via a chi-square test. One transforns the dependent variable and
t he dummy variabl es according to the transformation in the search
procedure. Then one conputes the difference between the sum of
squared residuals of the transfornmed i ndependent vari able
regressed on a transfornmed constant variable, and the sum of
squared residuals when the transfornmed i ndependent variable is
regressed on the transforned dummy vari ables. The data is, of
course, transformed with the D that m nim zes the sum of square
residual s of the unconstrained nodel. This statistic converges
in distribution (in T) to a O? distribution with degrees of
freedom equal to the number of plants mnus one.®® The nul
hypot hesis is conclusively rejected at any traditional |evel of
significance for all four industries. One should be concerned,
however, with invoking asynptotic properties in T, when working
with a 16 year tine dinension, given the potential for a downward
bias in D. Nevertheless, the p-value of the test only rises
above .05 for |arge and unreasonabl e estimates of D.

Table 3. Analysis of Variance and the Autocorrelation
Coefficient

®This is a special case of the GLM as exposited in Dhrynes,
1978, chapter 3.
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Sl F2 F? D D Pvalu | 100(F Num
C (OL |(sea | e /(Fi+F?)) | ber
S) rch that of
base [ = g Plant
d) for s
al i,j.
221 (.04 | .12 | 0.23 | .24 O 28 30
1 7 (.04
.09 |7 27 O 36 73
222 .05 |7 0.25
1 4 .35 O 43 38
.20 | (.03
227 |.15 |7 (@) .38 O 30 86
3 6 0.31
A2
228 | .05 |3 (.04
3 3 1)
0.34
.02
S)
| nposi ng a conventional fixed effects nodel, extended to all ow

for serial correlation in the error term |eads one to concl ude

that there are fixed effects in the data. That is, there are

permanent quality differences across plants. Furthernore, these

differences are large. A plant wwth a fixed effect that is one
standard devi ati on above average expects to produce between 21%
(SIC 2211) and 40% (SI C 2273) nore output than the average pl ant,

with the sane inputs.

V. The Case for M-M xi ng

This section presents a test of N-m xing. For a random

variable to be N-m xing over-tine, nmeans that with the passage of
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tinme the distribution of the randomsequence becones i ndependent of
the initial condition. If there truly are fixed effects, plants
do not N-mix. Formally, let {x,} be a stochastic process, where X
is an element of a conpact subset of the reals with a continuous
density function. Let Ma,b] be the F-algebra generated by
possi bl e realizations of [Xga...,Xy. Let P be the probability
neasure defined on M0,4]. Then x, is said to N-mx at a geonetric

rate if for all b > O:

_ b
SUBPg eM1,y] s.t. P(E,)>0, B,eMly+b, =] |P(E2|E1) P(E)) |<Ab¢

with ), finite and N < 1. This definition inplies that for any *

there exists a t such that:

supx0|E(xt|xo) —E(x,)|<8,

Testing this condition, however, may require an unreasonably | ong
time period.

A nore powerful inplication of N-mxing at a geonetric rate is:

pxio{ |E(xit+b+llxit+b’ R ’Xit) - E(Xit+b+1|xit+b’ R ’Xit’xio) |} < Abq

with ), finite (for all b) and N < 1. Intuitively, the expectation

¥These are sufficient conditions to ensure that the
expectations wll always exist.
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conditional on the lags becones arbitrarily close to the
expectation conditional on both the lags and the initial value, as
the nunber of |ags becones large (for details see Pakes and
Ericson, 1995). Anot her powerful inplication of N-mxing at a

geonetric rate is:

) - E(x % <A ¢F,

|x r X, it+b+1 1 Cit+p? * * ’xit’xio) | } t

it+b+1 1 Cit+p? * * i

supx,o{ | E(x
with ), finite (for all t) and N < 1
This inplies that for N-mixing, the observations close to the
current year may be informative, but as the observations nove
farther away fromthe current year they contain |less information.

This property clearly does not hold for a fixed effects nodel.

Test Procedure

The objective is to test the N-mi xi ng hypothesis; that is, two
plants with the sanme recent history have the sanme expected val ue of
Xi; even though their initial values of x;, differ. Under the
hypot hesi s of N-m xi ng, this i ndependence property becones stronger
as the di stance between t and 0 becones bi gger and as t he nunber of
| ags becone larger. | define x;, = tfp;,; - tfp,, where j denotes
that four digit industry. Note that x;; is a standardi zed tfp; if
Xi: = .35 then plant i is 35%nore productive than the average pl ant

inits industry in that time period.
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The alternative hypothesis is that x;; is not N-mxing. It is
illustrative, however, to consider a special case of the
al ternative hypothesis. Suppose the Xx;; IS generated according to
the fixed effects nodel with serial correlation, as estimated in
the previous section. For fixed effects, as the nunber of | agged
val ues becones large our estimate of the permanent paraneter
converges to its true value and therefore the information content
of X;, becones negligible. If we fix the nunber of |ags, however,
the information content of X;, IS non-decreasing in the distance
between 0 and t; if there is serial correlation, then the further
away the initial observation is fromthe current observation the
nore independent the error term becones and consequently the
observation becones nore informative. Under fixed effects, X,
al ways provides information on the expectation of x;; given a fixed
nunber of |ags, regardl ess of the distance between t and O.

| start with observations of tfp at the plant level for all of
textiles. | select the plants that are observed in the sane
industry in 1987, the initial year and for all of the | agged years.

Define q;, g,, and g; such that
prob(tfp, < ;) = prob(q:<tfpe<qg,) = prob(q,<tfp,<qgs) = prob(qgs<tfpo)
= . 25.

Define the function F(x;;): G 6 {1, 2,3,4} such that

Q. 1 ifotfp < qu,

2 if g, <tfp, < Qy
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3 if g, <tfp; < Qs

4 if g; < tfp;,.

Note that this function maps Xx;; into quartiles only in the
initial year. If t O 0, then nore or less than 25% of the plants

can end up in one quartile.

Def i ne
lije = 1 i f Q¢ =1,

0 ot herw se.
That is, I, = 1 if plant i was in cell j in year t and O
otherwise. In order to test that the expectation of tfp;g; given

tfpigg and tfp,, is equal to the expectation of tfp,g; given tfpg
(vs. the alternative hypothesis that it is not) | estimate the
paraneters of the equation below via O.S:

Efp; g, = i: B, Iij86+2 i: Bax Tiige Lixor
j=1

=1 k=2

and test the null hypothesis that $, = 0 for all j and k (vs. the
alternative that $;, does not equal O for sone j and k). The
interpretation of $;, is the difference between the expectation of
Xi: given (igs =] and Qo = 1 and the expectation of X;; given Qg =
j and g, = k. Therefore, the null is N-mxing and the alternative
is that it is not.

The extension to additional lags is straightforward. For two

lags | estinmate:
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LIP; 4, = g Bj Iij86+, Bjk Iij86 Iik85+, Bjkl Iij86Iik85Iilo

and test the hypothesis that $, = 0 for all j, k, and I. For
three lags, | estimte:
Iij86+j2; ; Bjk Iij86 Iik85+j=1 = Bjkl Iij86Iik85Iil84+j=1 by = L= BjklmIijS(

and test the hypothesis that $,,=0 for all j, k, | and m Wen
one of the independent variables is always zero, i.e., when a cel
is enpty, it is dropped fromthe regression.

| estimate this regression for all possible initial years (for
one lag the initial year ranges from 72 to 85, for tw lags it
ranges from 72 to 84, and so forth) via OLS.Y For one lag, the
nul | hypot hesis (of N-mi xing) can only be rejected, with 90 percent
confidence, when the initial year is greater than 75 (Table 4).
For two lags the null hypothesis can only be rejected when the

initial year is after 1982 (Table 5). For three lags, the nul

YI't is certainly possible that the variance of x differs
across cells, which would inply that an F-test is not valid.
Thi s probl em can be overcone via an application of GLM divide
t he dependent and i ndependent variables by the standard devi ation
of the cell and run OLS on the transforned data. Now an F-test
is asynptotically valid. 1In fact, the correspondi ng chi-squared
test is equivalent to the Pakes and Ericson test. | have
executed this procedure and the results are substantively the
sane.
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hypothesis is only rejected in 1981 (Table 6).

nul |

to 1987 strongly suggests N-m xing;

observations may matter,

the less information it provides.

hypothesis is rejected only as the initial

N-m xi ng says

The fact that the

year

t hat

moves cl oser

but that the nore di stant the observati on

Table 4: Test of tfpg;, Being | ndependent of tfp, G ven tfpg
year, Reur Rer DFEN DFD Ft est Pval ue
72 0. 254 0. 243 12 763 0. 923 0. 522
73 0. 263 0. 250 12 675 1.032 0.416
74 0. 262 0. 245 12 693 1.295 0. 216
75 0. 270 0. 260 12 709 0. 818 0. 631
76 0. 256 0. 237 12 729 1. 566 0. 096
77 0. 269 0. 245 12 908 2.476 0. 003
78 0. 276 0. 259 12 741 1. 454 0.136
79 0. 264 0. 237 12 677 2.062 0. 017
80 0. 261 0. 228 12 692 2. 557 0. 002
81 0. 244 0. 224 12 714 1.630 0. 078
82 0. 273 0. 250 12 1170 3.117 0. 000
83 0. 254 0. 224 12 799 2. 757 0. 001
84 0. 289 0. 260 12 1142 3.931 0. 000
85 0. 286 0. 251 12 1191 4. 829 0. 000

Tabl e 5: Test of tfpg; Being | ndependent tfp, Gven tfpg and

tf Pgs
year Reur Rer DFN DFD Ft est Pval ue
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72 0. 323 0. 288 47 665 0. 730 0. 910
73 0. 318 0. 286 47 582 0. 584 0. 988
74 0. 336 0. 280 47 591 1. 061 0. 366
75 0. 362 0. 299 45 608 1. 346 0. 069
76 0. 322 0.272 48 626 0. 975 0.521
77 0. 337 0. 289 46 802 1. 267 0. 113
78 0. 355 0.301 46 639 1.146 0. 239
79 0. 334 0. 270 45 574 1.232 0. 147
80 0. 329 0. 275 45 589 1. 057 0. 374
81 0. 335 0. 266 48 605 1. 300 0. 089
82 0. 317 0. 280 48 1057 1.197 0.170
83 0. 310 0. 243 45 693 1.493 0.021
84 0. 349 0. 291 47 1076 2.070 0. 000

Tabl e 6: Test of tfpg;, Being I ndependent of tfp, G ven tfpg, tfpgs,
t f Pga-

year, | Reur Rer DFN DFD Ft est Pval ue
72 0.470 0. 369 125 524 0. 798 0. 937
73 0. 445 0. 340 120 450 0.714 0. 986
74 0.476 0. 357 107 468 0. 995 0. 500
75 0.476 0. 374 109 486 0. 865 0. 821
76 0. 466 0. 339 122 490 0. 954 0. 616
77 0.477 0. 365 118 658 1.196 0. 092
78 0. 481 0. 359 115 504 1.029 0. 409
79 0.439 0. 331 106 455 0. 822 0. 888
80 0. 426 0. 337 97 478 0. 767 0. 944
81 0. 482 0. 333 106 485 1.314 0. 029
82 0.419 0. 334 141 879 0.912 0. 749
83 0.421 0.321 105 578 0. 952 0.613
In the previous section, | estimated paraneters of a data

generating process that allows for both fixed effects and seri al
correlation in plant |evel tfps. The variance of the fixed
effects is statistically discernible fromzero, which contradicts
N-m xi ng. These contradictory results beg the question: what is

the power of this test? For a fixed nunber of observations, the
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probability of accepting a wong null hypothesis (N-m xing) wll
becone arbitrary close to .95 (the probability of rejecting a
correct null hypothesis) as the variance of the fixed effects
becones arbitrary small. One can ascertain the power of this
test by asking the follow ng question: if the paranetric
estimates of the fixed effects were the true data generating
process behind plant productivity |evels, what would be the
probability of rejecting the null hypotheses of N-m xi ng under
t he above net hodol ogy?

| have generated ten Monte Carl o dat abases of 1000 pl ants
over 16 years according to the paranetric estinmates of sic 2283
(carpets) fromthe previous section.*® | have run the above
tests for N-mixing on these data sets and report the percentage
of times that the null hypothesis of N-mixing was accepted with
95% certainty in Table 7. One sees that the results are very
different. For one lag, the null hypothesis is rejected for
every initial year. For tw lags, the null hypothesis is
rejected about twenty percent of the time with the probability of
rejecting being higher the earlier the initial year. For three
| ags, the null hypothesis is rejected about 90 percent of the
tinme. |If there were permanent plant effects of the magnitude

nmeasured, the pattern energing fromthe data would be very

%¥The plant effects and the idiosyncratic error termwere
generated forma normally distributed random vari abl e.
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different. There is a key qualitative distinction between these
results; for the real data, the null hypothesis of N-m xing was
less likely to be rejected as the di stance between the current
year and the initial year increased, whereas for the Monte Carlo
results it was nore likely to be rejected.

It appears that the functional formof fixed effects with
serial correlation is too restrictive to capture key features of
the data. It is possible that a plant's productivity level is
subject to large transitory shocks and that it occasionally
retools, which is a permanent change to its productivity |evel.
Since the fixed effects specification does not allow for these
two different types of shocks to a plant's productivity |evel,
one mstakes the latter for a fixed effect.

Table 7: Estimated Probability of a Type Il Error?®

yea | P of Type II P of Type |1 P of Type |1
ro error with one error with two lags |error with three
| ag | ags

“Reports the percentage of tinmes the null hypothesis was
accepted with 95% confidence out of 10 trials.
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72
73
74
75
76
77
78
79
80
81
82
83
84
85
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VI. Estimates of a Mdre Fl exible Functional Form

The previous results suggest that plant level tfp (nmeasured
as the deviation fromthe industry nmean) contain at |east two
conponents, one that is transitory and one that is persistent but
not permanent. Expressing plant level tfps as the sumof two
AR(1) processes provides a functional formrich enough to capture

t hese two conponents:

= + + .
tfpit Vt ait eit’

where v, is non-stochasti c,

a, = ra, +&..; ande, = pe

+
it it-1 it-1 u'_1't'

Finally assune that * and - are independently distributed with

nmeans of 0 and variances of FZ(1-r?) and F? (1-D?, respectively.
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In this section, | shall conpute a sinple nethod of nonents
estimate of this process for each of the four bal anced panels, as
well as for the two digit textile industry as a whole. 2
Additionally, | shall conpute these estimtes for the
correspondi ng unbal anced panel s.

Once again, define

X, = tfp,, - tfp .,
whi ch converges in probability to tfp;, - v,. Let X be an NxT
matri x where the ;;th element is x;;.2* Let MM= X X/ (N-1) be the
sanple monent matrix (TxT). This matrix has T? sanpl e nonents,
((T+1)T)/ 2 of which are distinct. Any nodel inplies an
expectation of these nonents as a function of the paraneters. |If
the nunber of paraneters is less than ((T+1)T)/2, the nodel is
overidentified. The idea of nethod of nonents estimation is to
choose the paraneter values of the nodel to nmake the popul ation
monments as cl ose as possible to the sanple nonents. This nethod
yields estimates that are consistent in N, provided the nodel is
correctly specified. That is, for a fixed T, as the nunber of
plants goes to infinity the sanple nonents will converge in

probability to their true values. Consequently, the paraneter

©I'n the case of the textile industry as a whole, | measure
productivity as a deviation fromthe four digit industry mean.

?1 am adopting the convention that a y;; represents the
el enent of the matrix Y.
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estimates will converge in probability to their true values. 1In
panel data, T is typically small while Nis typically |arge.

Consistency in N, therefore, is a desirable property.

Let
c2+ol ro+pos ... (rflci+plic?)
a e a e a e
2 2 2 2
o XX - ro’+po’ c’+o’
MM= - 4
N-1
(rTlo?+pTto?) . e oZ+o?
L a e a e

i.e., the popul ation nmonent matrix given by the above nodel.
In order to set up the mnimzation problem it is useful to
vectorize these matrices dropping the redundant el enents. Let
MW = (mMm,, M, ...,"MMy MMy, ..., M, MM, ... M)
that is, the nonent vector. Let
PW = (pmm,, pmm,, ..., pmMMy pMm,, ..., PNy, pmmg, ...,
pmm)
that is, the popul ati on nonent vector.
Let 2 = (Fir F2D)', that is, the parameter vector, and 2, be
its true val ue.
And finally Iet

g(MW, 2) = W - PW(2),

i.e., the so called orthogonality conditions, because g, has an
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expectation of zero. Note that there are T(T+1)/2 such
condi ti ons.

A consistent estimate of 2, sol ves:

; = o~/
nin g, G= glg,

where | is a T(T+1)/2 by T(T+1)/2 identity matrix. Define 2 to
be the 2 that solves this problem i.e., the estimate of 2,
which is a function of M. The derivatives of g'lg are linear in
FZ and F2 and non-linear inr and D. Therefore, for a given
(r,D) minimzing g'lg with respect to F3 and F? nerely invol ves
solving two |inear equations in two unknowns, which suggests a
procedure for approximating the solution. | run a grid search

over possible values of r and D, conputing

: /
mln[cﬁ,cﬁl g'Ig

for each pair of r and D and choose the pair that yields the
lowest min[F3F g'lg. In practice, | execute this by running a

grid search over a 100 by 100 grid.? From a conputationa

Zr' 0 {0.005, 0.015, 0.025, ..., 0.995} and D' 0 {0, 0.01,
0.02,...,0.99}. | set up the grid to avoid r' equaling D',
because the values of F2 and F? that nminimze g'lg are not unique
if rr =D. | then take the |largest and smallest values of r'
and D' to be r and D, respectively. It should be clear fromthe
previous results that both D and r will be positive. This prior
was confirmed by running a search over a coarser grid that
allowed D and r to range between -1 and 1; they consistently
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perspective, the surface of Gis well behaved. It has one |ocal
maxi mum and small changes in the maxi m zation al gorithm do not
lead to |large changes in the estimates. The results for the
bal anced and unbal anced panels are reported in Tabl es 8&9.

In order to convert these sinple nethod of nonent estimtes

into "general nethod of nonents estimtes,"” one would estimte
t he expectation of gg' on basis of the estinates of 2 in Table
8. The inverse of this matrix woul d then becone the optinma
wei ghting matrix, and one typically iterates until the paraneter
estimates converge (cf. Ham lton, Chapter 14, 1995). These
estimates would then be efficient, given the nonents.
Unfortunately, working out an analytical expression for the
expectation of gg' is not practical. For the bal anced panel
only, I can estimate it wth Monte Carl o techni ques (while not
i npossi ble, estimating it for the unbal anced panels is
conput ational ly rather intensive).

| f the precision of consistent estimates is high, then the
gain in obtaining efficient estimates is marginal. But in order
to make this claim one needs neasures of the precision of the
estimates, i.e., asynptotic standard errors. Asynptotic standard
errors are conputed for the bal anced panels as follows. First, |
use a first order Taylor expansion and inplicit differentiation

to wite the paraneter estimates as a linear function of the

cane up positive.
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sanpl e nonment vector. Second, | use Monte Carlo techniques to
estimate the variance covariance matri x of the sanpl e nonent
vector for the balanced panel. Finally, | transformthis matrix
on basis of the linear approximtion to obtain an asynptotic
vari ance covariance matrix of the paraneter estimates. The

asynptotic standard errors of the estimates are in parenthesis in
Table 8. For the conplete details of this techni que see Appendi X

1. | have not conputed the standard errors for the unbal anced

panel's paraneter estimates due to the conputational burden.

Tabl e 8: Method of Monent Estinmates (Bal anced Panel s)

Sl F2 r F? D 100( | hal | num
C F/F+ | f ber
F?) lif | of
e plan
ts
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22 .068 .94 .09 22 (41 11. | 30
11 |8 (.060 18] 5 2
(021 | 5) (.02 (.45
3) 5) 6) 42 73
22 .97 22.
21 .064 | (.030 .08 .34 7
013 | 7) 68 5 56 38
) (.01 (.18
22 .96 6) 9) 17.
73 .210 | (.046) 39 (@ 86
5 A5 .30
(.0O55 .96 o5 5
22 ) (.032) | (.06 (.10 |41 17. | 631
83 6) 9) O
.0O70 935
3 (.012 .10 .42
22 (.014 | 2) 79 5 10.
) (.01 (.15) 3
S)
.097 .30
7 .14 | (.04
(.005 o1 1)
7)) (.00
66)
Tabl e 9: Method of Monent Estimates (Unbal anced Panel s)
Sl F2 r F? D 100( | half | aver
C F2 life | age
/(F2+F num
9) ber
of
plan
ts®

#This is the mean nunber of plants used in conputing each
sanpl e nonent.

38




22 .082 | . 935 | .202 | .30 |28 10. 100
11 (3 5 3
.995 41 | 67 198
22 .089 .044 138
21 |5 945 | 6 .40 | 36 110
12.
22 213 | .92 .384 | .28 | 30 8 229
73 | 5 3 5
935 43 83 (170
22 .087 205 | .27 (@
83 | 09 5 5 10.
3
22 191 .248
8 6
As r approaches 1, for a finite F2 this nodel becones the

fi xed effects node

esti mat ed val ue of

r

estimated in Section II1.

is close 1 in al

| ndeed,

cases and the rest of the

paraneter estimates are simlar to those estimated in Section

1. In all the bal anced panels, nevertheless, an r of |ess than

.995 fits the data better than .995, which is |argest possible
i ndustry | evel

value in the grid search. At the four digit

(where the nunber of observations is small) r is about one
standard error away fromone. Wen | ooking across all of

textiles (where the nunber of observations is large) the estimte
of r is about six standard errors away from one and therefore
highly significant. These estimates are consistent with the
finding of N-mxing; there is a highly persistent conponent to a

plant's tfp, but it is not fixed. The sixth colum of Table 8

presents the percentage of cross-sectional variation explained by
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t he persistent conponent, which ranges from 39 percent to 56
percent. Note that these nunbers are consistently |arger than
the correspondi ng nunbers in Table 3. This denonstrates that by
requiring the persistent conponent to be fixed, one understates
its inportance.

The picture that enmerges for the unbal anced panel is
sonmewhat different. The nmagnitude of the transitory shocks is
considerably larger, except in SIC 2221. It is likely that this
is the result of outliers, which are nore of a problemin the
unbal anced panel. The Census edits the responses of |arge plant
nore intensely; large plants are over-represented in the bal anced
panel , because snmall plants are sanpled intermttently. The
magni t udes of the persistent conponent, however, are simlar.
The degree of persistence is also substantively the sanme, except
in SIC 2221, where r took on the |argest possible value, r =
.995. The estimates of r and F? in 2221 are both problematic; it
is possible that the estimates for this industry are outlier
dom nat ed.

Not e that one conponent of tfp is indeed highly transitory
while the other is highly persistent in all four industries.
Consistent estimates of the half life of a;; can be found by

solving for J:
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given the estimate of r. These half lives are reported in the
fifth colum of Table 8. In the Carpet Industry (SIC 2273), if
t he persistent conponent of a given plant is 50 percent above
aver age today (about one standard deviation) then it expects to
be 25 percent above average 15 years from now.

This paper's results are summarized in Figure 1. The
squares plot the sanple correlation coefficients between tfp;
and tfp;,, where x ranges from72 to 87 for SIC 2283.2* The plus
synbols plot the predicted correlation coefficients from
estimates of a sinple AR(1) process, i.e., estimating x;;, = Dx;,.,
+ ,;; via QLS. dCearly, there is too nuch persistence in the
data for this sinple nodel. The dianonds plot the correl ation
coefficients predicted by the fixed effects nodel estimated in
Section IV. This nodel predicts that the correlation coefficient
w |l asynptote a positive value that appears too large to be
consistent wwth the data. The triangles plot the serial
correlation coefficients predicted by the nodel estimated in this
section, which fits the data well. It predicts that the
correlation coefficient wll rapidly fall off at first and then
gradual |y asynptote 0. It predicts that the plant's productivity

| evel eventually becones independent of its initial value; plant

#The corresponding figures for the other industries are
substantively the sane, but noisier. This is to be expected,
gi ven that the bal anced panel for SIC 2283 has the | argest nunber
of observations. Furthernore, correspondi ng graphs for the
unbal anced data sets are simlar.
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productivity levels N-m x.

Figure #1
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VI1. Econonetric and Econom c I nplications

We have | ong known that there is substantial persistence in
pl ant productivity levels (cf. Dhrymes, 1991; Bartel sman Dhrynes,
1991; Baily, Hulten, and Canpbell, 1992). Dwer (1995b)
denonstrates that when ranking plants according to their
productivity 12 years ago, the 85th percentile plant is as much
as 20% nore productive than the 15th percentile plant, today. |Is

this persistence permanent? Wen inposing a conventional fixed
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effects nodel on the data, extended to allow for serial
correlation in the error term one conclusively concl udes that
there are fixed effects in the data. That is, the paranetric
nmet hodol ogy | eads one to the conclusion that there are pernanent
differences in plant productivity |levels, consistent wwth a
passi ve | earni ng nodel of plant dynam cs.

A non-paranetric test, however, reveals that a plant's
productivity in year t becones independent of its productivity in
year 0 as t becones large, i.e., plant productivity |evels N-

m X, consistent with an active exploration nodel of plant

dynam cs. This non-paranetric conclusion contradicts the
paranetric conclusion. Mnte Carlo results suggest that the
functional forminposed on the data by the fixed effects nodel is
toorigid; if there were fixed effects of the magnitude neasured,
the testing procedure woul d have rejected the hypot hesis of N-

m Xi ng. | f this phenonenon is true across many industries, then
the "fixed-effects solution” to the sinmultaneity problemwl|
becone nore problematic as panels becone |longer. There are at

| east two approaches to solve this problem First, one could
work with a rolling panel. Second, one could devel op a quasi -
fixed effects nodel, that is, estimating sone sort of noving
average intercept. | am skeptical about the value of either
approach. If one is really interested in solving the

sinmultaneity problem one needs to "find (instrunental) variables



t hat have genuine infornmation about factors which affect firns
differentially as they choose their input levels" (Giliches and
Mai resse, 1995, page 23).

The paranetric conclusion of fixed effects leads to
di fferent econom c concl usions than the non-paranetric concl usion
of N-m xing. The paranetric results suggest a passive |earning
nodel whereas, the finding of N-m xing suggests a nodel of
active exploration (Pakes and Ericson, 1995). Mbre recent
t heoretical papers enphasize the option value of an existing
plant (Dixit, 1992; and Canpbell, 1994). It is argued that a
plant wth margi nal cash flows has a positive val ue, because
there is a possibility of it becom ng highly productive and its
decision to exit is irreversible. The paranetric results suggest
that this option value would be small, because the differences in
pl ant productivity levels are fixed, except for a transitory
shock that is short lived. Wereas, the non-paranetric results
suggest that there are both transitory and persistent changes to
a plant's productivity |level and the option value associated with
the persistent changes is potentially |arge.

A nmet hod of nonents estimate of a nore flexible functional
form suggests that the quasi fixed effects erode slowy; if your

manager is 50 percent nore productive than average today, 15
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years from now you expect himto be 25 percent above average. ?®
This result begs two questions: is this persistent conponent
nostly neasurenent error? if not, why are the market forces in
the textile industry -- a conpetitive industry -- working so
sl ow y?

There are a nunber of reasons to doubt that this persistence
is the product of persistent nmeasurenent error alone. First, the
sanme amount of persistence is observed in |abor productivity,
whi ch shoul d have | ess neasurenment error. Second, nost
expl anations of neasurenent error in value added will inply that
plants with high neasured productivity would have a | ow materi al
to sales ratio. For exanple, suppose a plant sets the
i nterconpany transfer price of its product too high, then it wll
overstate its value added and productivity will be overesti mated.
Furthernore, the material to sales ratio will be bel ow the
i ndustry average, ceteris paribus. Some work in progress reveals
that plants that are nmeasured as highly productive today do
i ndeed have |low material to sales ratios. This correlation,
however, is not persistent. Therefore, neasurenent error that is
identified by the material to sales ratio does not explain
persistence in tfp.

| f one rules out persistent nmeasurenent error, one is left

“\bre precisely, if your productivity today (after filtering
out transitory shocks) is 50 percent above average, then you
expect to be 25 percent of above average 15 years from now.
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to speculate on why the market forces in a conpetitive industry
seemto be working so slowy. Recently, there has been interest
in nmodels in which econom c agents optimally chooses to
periodically adopt a new technology as their current technol ogy
becones obsol ete (Parente, 1994; Dwyer, 1995a). A 10 to 20 year
half life in the persistent conponent suggests a rather |ong
retooling cycle. Nevertheless, there is evidence that retooling
cycles are long. This is true in textiles -- diffusion of the
shuttl el ess | oom has taken over 20 years (M T Comm ssion on

| ndustrial Productivity, 1989, chapter 4, page 25) -- as well as
in other industries. D ffusion of the Diesel Loconotive took
over forty years (Jovanovic and MDonal d, 1994). Recent surveys
of 61 paper mlls report 1973 as the average date of the | ast
maj or rebuild (Upton, 1995). It may be that the fixed costs of
adoption are big, which results in a long retooling cycle.

Vi nt age human capital, or a quasi-fixed nmanagerial effect is
certainly another possibility. In the steel industry, |chniowski
and Shaw (1995) found that "through 1992, very few of these ol der
lines (started in the 50s and 60s) made any changes to their
traditional (managenent) practices.” The firnms that did make
changes did so "during tines of threatened job | oss when new
managers are brought in to make | arge-scal e changes in the work
environnent." Therefore, it seens |likely that vintage human

capital, as nodelled in Chari and Hopenhayn (1991), expl ains sone

a7



of the persistence in productivity differentials.
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Appendi x I: Analysis of Variance on a Bal anced Panel with Seri al

Correl ation

I n panel data, as the degree of serial correlation
approaches a unit root the data will look like it has fixed
effects, even in the absence of fixed effects. Here, | devel op
unbi ased estimates of the variances of the fixed effects and the
error term assumng the that error termfollows an ARl process,
whi ch is known, for a bal anced panel.

Let tfp;;, be NXT observations (N and T are the nunber of

pl ants and years, respectively.) generated by:

tfp,. = v,*ta,*e, i e, = e, m1l + u,,

where v, are determnistic tinme trends, a are non-
stochastic with a nean of zero and a of variance of F2?¢, and :;,
are independently drawn froma distribution whose nean is zero

and variance is F2 Define

Let x., and x;. denote the nmean of x in a given year and across

tinme, respectively.

®Al ternatively, a could be independently drawn from a
distribution with a nean of zero and a variance of F2.
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Let

ESS1=E zt: E (tfp,,.~tfp. ]
-5 (XX trpr - XX tfp.zt)
=NY V2HIN(0Z+ol) SN Y v - = E Y ((Ya, ) (Me;, )?)
t t N t 1 1 i

=T(N—1)(c5§+c5§).

Let
X, = tfp,, - tfp.,.
Def i ne
Ess2 = B Y 3 (x,, - xi.>2)
1 t
=E( Ex2—2zzxit X, . +EZX1.2).
1 t 1 t 1 t
Here, the first termis just ESS1. |In order to evaluate the

next, two terns observe that:
x, = ( tfp,, - tfp.t)

)3
Ve ta;ten - (_ <vt+ai+€it>

N

ave - (i)z(ai+eit ).

N

Therefore, the second two terns in the ESS2 expression can be
eval uated as foll ows:



N ai elt ?
= —_— F — _ =+ _
o[y e
N a 2 e )
==E (Zal)2+ EZ 1 +(E€i)2+ EZ it
T t t 1 N t t 1 N,
N a; €ie
22 B Xa, XY 2 -Yed )
T t t 1 N t t 1 N
1 N 1
=TN1-=|c’ + —|1-=| E e, )’
N a g N (; lt)
Ther ef or e,
ESS2 = T(N-1)c% - (N;Tl] E[(Eeit )2)
t
Finally,
-1 _k
E((Y e, )% = T2 +2) Y plc?
t k=1 j=1
- _ ~kt+1
— TGZ + 2 PP ] 2
e = 1_p e
2_ . T+1
= T2 + 2(T-1) -2/ PP 1,
1-p (1-p)?
Ther ef or e,
— _ 2_ A T+1
ESS2 = TN—T—N+1—( N 1] 2(-le ) 2e7mp T2,
T 1-p (1-p)?
Now solving for F3 and F? is just a matter of solving to
equations and two unknowns.
Appendi x |1: Computi ng Asynptotic Standard Errors for the
Sinpl e Met hod of Mnents Esti mates.
First, in order to make the linear approxinmation, | need to

differentiate 2 with respect to W. This derivative can be
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obtained inplicitly. Because 2 nmaxinizes G at an interior of
t he paraneter space (its an open space), DG-.5 = (0,0,0,0)'
where DG is the derivative of Gwith respect to 2. Noting that

Gis a function of both 2 and MW yi el ds:

d(DG,)  9DG, DG, 98, .
= + = ’
dMV MV 28, oMV
for all i and j. Therefore, 2 can be approxi mated by:

8 =6, +H-(MV-PMV),

where His 4x((T+1)T/2) and

0DG.
38 . oMV .
h.. = Io - i,
oMV, aDG,
36

This |inear approximtion provides a neans for determ ning the
[imting distribution, because it becones arbitrarily accurate as
2 approaches 2 (provided 2 is continuous in W).

In order to determ ne the variance covariance matrix of 2,

we need the variance covariance matrix of MV. This can be
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obt ai ned by Monte Carl o techni ques for the bal anced panel. |
generated 100 industries according to the paraneter estimtes (I
drew t he underlying shocks froma normal distribution.); |
constructed 100 MV; and | conputed the variance covariance matrix
of the these 100 random nonent vectors. The variance-covari ance
matrix of 2 is HEH, where E is the estinmated vari ance
covariance matrix of MV. The standard errors are conputed

accordi ngly.

Appendi x I'l11: Data

My data set consists of the textile plants (SI C 2200-2299)
in the Longitudi nal Research Database (LRD), which is based on
t he Annual Survey of Manufactures (ASM and the Census of
Manuf actures (CM.2” The sanple runs from 1972 until 1987.

The CMis carried out every five years (1967, 1972, 1977,
1982, and 1987) and each plant is, in principle, sanpled with
probability one. The ASM draws a sanple of plants two years
after the census, and then follows this sanple for five years
(these sanples begin in 74, 79, and 84). It adds newy created

plants to the sanple every year. The sanple probability is

2"For a detailed description of this database see McQuckin and
Pascoe (1988).
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increasing in plant size.

My sanple is a subset of a sanple that includes al
information avail able on every plant ever in the SIC codes 2200-
2299 from 1967 to 1989. The sanple is truncated to drop
adm ni strative record cases, which are small plants for which
only a limted anount of information is collected, and drops pre-
1972 and post-1987 observations. The pre-1972 observations were
dropped in order to construct a conplete tine series and the
post - 1987 observations were dropped, because machi ne and capital
retirements were not collected in 1988 or 1989. The regressions
are ran separately for each four-digit SIC code, and therefore a
pl ant was only included in the regression if it was in that
textile industry. M unbal anced sanple contains four years in
which all firnms are sanpled with probability one (in theory), and
three different sanples in which large firnms are sanpled with a
hi gher probability.

To resol ve an apparent inconsistency in the classification
of plants in census and non-census years the foll ow ng
aggregations are made: SIC 2258 includes DI ND 2258 and 2292; SIC
2273 includes DIND 2271, 2272 and 2279; SIC 2283 includes D ND
2281, 2283 and 2284; SIC 2299 includes DI ND 2291, 2293, 2294 and
2299 (DIND is the derived industry code). The relevant prices
i ndi ces were conputed as a Laspeyres price index with 1987 as a

base year via Gay's productivity database with total val ue of
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shipnents as the rel evant weights (Gay, 1989).

Vari abl e Constructi on:

RVA (Real val ue added)
Val ue added is conputed as the total value of shipnents plus
changes in the value of inventories |ess the cost of
materials (including materials, supplies, fuel, electric
energy, cost of resales, and cost of contract work). Value
added is deflated through Gray's shipnments price index to
gener ate RVA

TE (Total enpl oynent)
Total enploynment is the sumof the average nunber of
producti on workers and nonproduction workers.

BOOX (G oss book val ue of capital)
The only neasure of assets that can be cal cul at ed
consistently across small plants (which are intermttently
sanple) and large plants is book value. That is the book
val ue of buildings and machinery at the end of the period
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plus the capitalized value of rental paynents defl ated by
Gray's investnent price index.

Assets, = (BAE, + MAE))/PINV, + (BR+MR)/ (r.PINV,).
Here BAE and MAE are the gross book val ue of assets and
machi nery at the end of the period; BR and MR are rents paid
for buildings and machinery, and r is the user cost of
capital (Wang, 1994).

Payrol |l and Average Wages
Payroll is the sumof total salaries and wages (SW plus
l egal ly required supplenental |abor costs (LE) and voluntary
suppl enental | abor costs (VLC). Average wages are payrol
di vided by total enpl oynent (TE)

60



